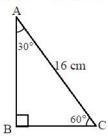
I SEMESTER EXAMINATION 2017-2018

SUBJECT: MATHS II(GEOMETRY)

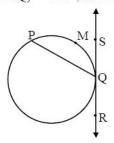
STD: X MAX MARKS: 40 DATE: 03/10/17 TIME: 2 Hrs

Note:

1. Solve all questions. Draw diagrams wherever necessary.


- 2. Figures to the right indicate full marks.
- 3. Diagrams are essential for the proof of the theorem.

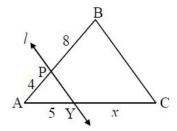
1. Solve any FIVE sub questions:


(5)

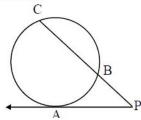
i. $\Delta DEF \sim \Delta MNK$. If DE = 2, MN = 5, then find the value of $\frac{A(\Delta DEF)}{A(\Delta MNK)}$

ii. In the following figure, in $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle C = 60^{\circ}$, $\angle A = 30^{\circ}$, AC = 16 cm. Find BC.

iii. In the following figure, m(arc PMQ) = 110° , find \angle PQS.

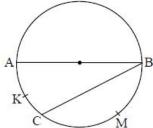

iv. If the $\grave{e} = -45^{\circ}$, find the value of tan \grave{e} .

- v. The terminal arm is in II (second quadrant), what is the possible measure of an angle.
- vi. If the sides of a triangle are 6cm, 8cm and 10 cm respectively, determine whether the triangle is right angled or not.


2. Solve any FOUR sub questions:

(8)

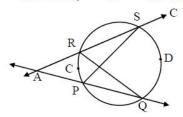
i. In the given figure, line $l \parallel$ side BC, AP = 4, PB = 8, AY = 5 and YC = x. Find x.



ii. In the following figure, a tangent segment PA touching a circle in A and a secant PBC are shown. If AP = 12, BP = 9, find BC.

iii. Draw a tangent at any point 'M' on the circle of radius 3.3 cm and centre 'O'

iv. In the following figure, seg AB is a diameter of the circle, $m(\text{arc AKC}) = 40^{\circ}$. Find the value of m(arc BMC).



- v. A vertical stick 12 m long casts a shadow 8m long on the ground. At the same time a tower casts the shadow of length 40m on the ground. Determine the height of the tower.
- vi. If $\sin \grave{e} = \underline{3}$, where \grave{e} is an acute angle, then find the value of $\cos \grave{e}$

3. Solve any THREE sub questions:

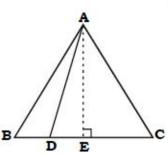
(9)

- i. Adjacent sides of a parallelogram are 11 cm and 17 cm. If the length of one of its diagonal is 26 cm, find the length of the other.
- ii. In the following figure, secants containing chords RS and PQ of a circle intersects each other in point A in the exterior of a circle. If $m(\text{arc PCR}) = 26^{\circ}$, $m(\text{arc QDS}) = 48^{\circ}$, then find:
 - a. $m \angle PQR$
- b. $m \angle SPQ$
- c. m∠RAQ

- iii. Draw the circumcircle of \triangle PMT in which PM = 5.6 cm, \angle P = 60°, \angle M = 70°.
- iv. Prove that

$$\sqrt{\frac{1+\cos A}{1-\cos A}} = \csc A + \cot A.$$

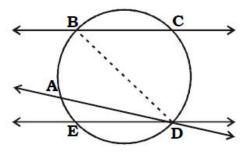
v. Eliminate è, if


$$x = 3 \csc \theta + 4 \cot \theta$$
.

$$y = 4 \csc \theta - 3 \cot \theta$$
.

4. Solve any TWO sub questions:-

(8)


- i. Prove that "the opposite angles of cyclic quadrilateral are supplementary".
- ii. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and width of the river. $(\sqrt{3} = 1.73)$
- iii. In the figure, $\ddot{A}ABC$, AB = AC and D is any point on BC. Prove that $AB^2 - AD^2 = BD$. CD

5. Solve any TWO sub questions:-

(10)

- Prove that, if a line parallel to a side of a triangle intersect the other sides in two distinct points, then the line divides those sides in proportion.
- ii. \triangle AMT \sim \triangle AHE. In \triangle AMT, MA = 6.3 cm, \angle MAT = 120°, AT = 4.9 cm, $\frac{MA}{HA} = \frac{7}{5}$. Construct \triangle AHE.
- iii. In the given circle with centre O and BC \parallel ED, m(arc BC) = 94 $^{\circ}$, m(arc ED) = 86 $^{\circ}$, ADE = 8° .

Find a) m(arc AE)

- b) m(arc DC)
- c) m (arc EB)

Also find ñ

ñ